
Large Language Monkeys: Scaling Inference Compute

with Repeated Sampling

Bradley Brown∗†‡, Jordan Juravsky∗†, Ryan Ehrlich∗†, Ronald Clark‡, Quoc V. Le§,
Christopher Ré†, and Azalia Mirhoseini†§

†Department of Computer Science, Stanford University
‡University of Oxford
§Google DeepMind

bradley.brown@cs.ox.ac.uk, jbj@stanford.edu, ryanehrlich@cs.stanford.edu,

ronald.clark@cs.ox.ac.uk, qvl@google.com, chrismre@stanford.edu,

azalia@stanford.edu

July 31, 2024

Abstract

Scaling the amount of compute used to train language models has dramatically improved their
capabilities. However, when it comes to inference, we often limit the amount of compute to
only one attempt per problem. Here, we explore inference compute as another axis for scaling
by increasing the number of generated samples. Across multiple tasks and models, we observe
that coverage – the fraction of problems solved by any attempt – scales with the number of
samples over four orders of magnitude. In domains like coding and formal proofs, where all
answers can be automatically verified, these increases in coverage directly translate into improved
performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues
solved with DeepSeek-V2-Coder-Instruct increases from 15.9% with one sample to 56% with
250 samples, outperforming the single-attempt state-of-the-art of 43% which uses more capable
frontier models. Moreover, using current API pricing, amplifying the cheaper DeepSeek model
with five samples is more cost-effective and solves more issues than paying a premium for one
sample from GPT-4o or Claude 3.5 Sonnet. Interestingly, the relationship between coverage and
the number of samples is often log-linear and can be modelled with an exponentiated power
law, suggesting the existence of inference-time scaling laws. Finally, we find that identifying
correct samples out of many generations remains an important direction for future research in
domains without automatic verifiers. When solving math word problems from GSM8K and
MATH, coverage with Llama-3 models grows to over 95% with 10,000 samples. However, common
methods to pick correct solutions from a sample collection, such as majority voting or reward
models, plateau beyond several hundred samples and fail to fully scale with the sample budget.

1 Introduction

The ability of large language models (LLMs) to solve coding, mathematics, and other reasoning tasks
has improved dramatically over the past several years [42, 11]. Scaling up model training has been
a consistent driver of these gains. Investments in larger models, larger pre-training datasets, and
more extensive post-training (e.g. through collecting human preference labels) has led to remarkably
capable generalist systems [2, 3, 4, 47].

Title inspired by https://en.m.wikipedia.org/wiki/Infinite_monkey_theorem.
∗ Equal Contribution. Work done by BB as a visiting researcher at Stanford.

1

https://en.m.wikipedia.org/wiki/Infinite_monkey_theorem

x = int(input()) …
Problem: Input
a number from

stdin and …

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Problem 1 (coverage): Can we generate a correct
solution?

Problem 2 (precision): Can we identify a correct
solution from the generated samples?

Verifier
(e.g. unit tests, proof

checkers, majority voting)

data = {} …

import requests …

LLM

x = int(input()) …

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many candidate solutions for
a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific verifier (ex. unit
tests for code) to select a final answer from the generated samples.

In contrast, a comparatively limited investment has been made in scaling the amount of
computation used during inference. Larger models do require more inference compute than smaller
ones, and prompting techniques like chain-of-thought [56] can increase answer quality at the cost
of longer (and therefore more computationally expensive) outputs. However, when interacting
with LLMs, users and developers often restrict models to making only one attempt when solving a
problem. In this work, we investigate repeated sampling (depicted in Figure 1) as an alternative
axis for scaling inference compute to improve LLM reasoning performance.

The effectiveness of repeated sampling is determined by two key properties:

1. Coverage: As the number of samples increases, what fraction of problems can we solve using
any sample that was generated?

2. Precision: In settings where we must select a final answer from the collection of generated
samples, can we identify correct samples?

With unlimited attempts, any model that assigns a non-zero probability to every sequence
will achieve perfect coverage. However, repeated sampling is only practical if we can improve
coverage with a feasible budget. Moreover, without the ability to decide between samples, the
applications of repeated sampling are limited. Existing work provides encouraging evidence along
both of these directions, showing examples of repeated sampling improving performance in math,
coding, and puzzle-solving settings [55, 43, 22]. Notably, AlphaCode [37], a state-of-the-art system
for competitive programming, finds that performance continues to improve with a million samples
per problem.

Here, we show that repeated sampling is an effective methodology for improving coverage across
a range of tasks, models, and sample budgets. For example, when solving CodeContests [37]
programming problems using Gemma-2B [48], we increase coverage by over 300x as we scale the
number of samples, from 0.02% with one attempt to 7.1% with 10,000 attempts. Interestingly, the
relationship between log(coverage) and the number of samples often follows an approximate power
law. With Llama-3 [3] and Gemma models, we observe that coverage grows nearly log-linearly with
the number of samples over several orders of magnitude.

In settings where all of a model’s solutions can be automatically verified, such as with proof
checkers or unit tests, these increases in coverage translate directly into improved task performance.
When applying repeated sampling to competitive programming and writing Lean proofs, models like
Llama-3-8B-Instruct can exceed the single-attempt performance of much stronger ones like GPT-4o
[2]. This ability to amplify weaker models extends to the challenging SWE-bench Lite dataset of
real-life GitHub issues [30], where the current single-attempt state-of-the-art (SOTA), achieved by

2

a mixture of GPT-4o and Claude 3.5 Sonnet models, is 43% [1]. When given a single attempt,
DeepSeek-Coder-V2-Instruct [19] achieves only 15.9% on the benchmark. By simply increasing
the number of attempts to 250, we increase the fraction of solved problems to 56%, exceeding the
single-attempt state-of-the-art by 13%.

In addition to improving model quality, repeated sampling provides a new mechanism for
minimizing LLM inference costs. When holding the total number of inference FLOPs constant, we
find that on some datasets (e.g. MATH) coverage is maximized with a smaller model and more
attempts, while on others (e.g CodeContests) it is better to use a larger model. We also compare
API prices between DeepSeek-V2-Coder-Instruct, GPT-4o, and Claude Sonnet 3.5 in the context of
solving SWE-bench Lite issues. When keeping the agent framework (Moatless Tools [62]) constant,
sampling five times from the weaker and cheaper DeepSeek model solves more issues than single
attempts from Claude or GPT, while also being over 3x cheaper.

Finally, in math word problem settings, where answers cannot be automatically verified by
existing tools, we identify a large gap between coverage and the performance of common methods for
deciding on a final answer. When solving MATH [24] problems with Llama-3-8B-Instruct, coverage
increases from 79.8% with 100 samples to 95.3% with 10,000 samples. However, methods such as
majority voting and using reward models plateau with a lower sample budget, scaling only from
38.7% to 39.8% over the same range. These results highlight that building robust verifiers remains
an open problem.

In summary, our primary observations are:

1. We demonstrate that scaling inference compute through repeated sampling leads to large
improvements in coverage across a variety tasks, models, and sample budgets. This makes
it possible, and sometimes cost-effective, to amplify weaker models with many samples and
outperform single attempts from more capable models. Notably, we are able to solve 56%
of issues from SWE-bench Lite by sampling 250 times from DeepSeek-V2-Coder-Instruct,
exceeding the single-attempt SOTA of 43%.

2. We show that the relationship between coverage and the number of samples can often be
modelled using an exponentiated power law, suggesting a form of scaling laws for inference-time
compute.

3. In domains without automatic verifiers, we show that common approaches to verification
like majority voting and reward model scoring plateau beyond approximately 100 samples.
This leads to a growing gap between the performance achieved with these methods and the
coverage upper bound.

2 Scaling Repeated Sampling

We focus on pass-fail tasks where a candidate solution can be scored as right or wrong. The primary
metric of interest for these tasks is the success rate: the fraction of problems that we are able to
solve. With repeated sampling, we consider a setup where a model can generate many candidate
solutions while attempting to solve a problem. The success rate is therefore influenced both by
the ability to generate correct samples for many problems (i.e. coverage), as well as the ability to
identify these correct samples (i.e. precision).

The difficulty of the precision problem depends on the availability of tools for sample verification.
When proving formal statements in Lean, proof checkers can quickly identify whether a candidate
solution is correct. Similarly, unit tests can be used to verify candidate solutions to coding tasks.

3

In these cases, precision is handled automatically, and improving coverage directly translates into
higher success rates. In contrast, the tools available for verifying solutions to math word problems
from GSM8K and MATH are limited, necessitating additional verification methods that decide on a
single final answer from many (often conflicting) samples.

We consider the following five tasks:

1. GSM8K: A dataset of grade-school level math word problems [18]. We evaluate on a random
subset of 128 problems from the GSM8K test set.

2. MATH: Another dataset of math word problems that are generally harder than those from
GSM8K [13]. Similarly, we evaluate on 128 random problems from this dataset’s test set.

3. MiniF2F-MATH: A dataset of mathematics problems that have been formalized into proof
checking languages [60]. We use Lean4 as our language, and evaluate on the 130 test set
problems that are formalized from the MATH dataset.

4. CodeContests: A dataset of competitive programming problems [37]. Each problem has a
text description, along with a set of input-output test cases (hidden from the model) that can
be used to verify the correctness of a candidate solution. We enforce that models write their
solutions using Python3.

5. SWE-bench Lite: A dataset of real world Github issues, where each problem consists of a
description and a snapshot of a code repository [30]. To solve a problem, models must edit
files in the codebase (in the Lite subset of SWE-bench that we use, only a single file needs to
be changed). Candidate solutions can be automatically checked using the repository’s suite of
unit tests.

Among these tasks, MiniF2F-MATH, CodeContests, and SWE-bench Lite have automatic
verifiers (in the form of the Lean4 proof checker, test cases, and unit test suites, respectively). We
begin by investigating how repeated sampling improves model coverage. Coverage improvements
correspond directly with increased success rates for tasks with automatic verifiers and in the general
case provide an upper bound on the success rate. In coding settings, our definition of coverage is
equivalent to the commonly-used pass@k metric [15], where k denotes the number of samples per
problem. We use this metric directly when evaluating on CodeContests and SWE-bench Lite. For
MiniF2F the metric is similar, with a “pass” defined according to the Lean4 proof checker. For
GSM8K and MATH, coverage corresponds to using an oracle verifier that checks if any sample
“passes” by outputting the correct final answer. To reduce the variance when calculating coverage, we
adopt the unbiased estimation formula from Chen et al. [15]. In each experiment, we first generate
N samples for each problem index i and calculate the number of correct samples Ci. We then
calculate the pass@k scores at each k ≤ N of interest according to:

pass@k =
1

of problems

of problems∑
i=1

(
1−

(
N−Ci

k

)(
N
k

))
(1)

We use the numerically stable implementation of the above formula suggested in Chen et al.
[15]. Results and code will be available at https://scalyresearch.stanford.edu/pubs/large_
language_monkeys/.

4

https://scalyresearch.stanford.edu/pubs/large_language_monkeys/
https://scalyresearch.stanford.edu/pubs/large_language_monkeys/

1 101 102

Number of Samples (k)
0

0.5

1
Co

ve
ra

ge
 (

pa
ss

@
k)

SWE-bench Lite
DeepSeek-Coder-V2-Instruct + Moatless Tools
Single-Attempt SOTA (CodeStory Aide + Mixed Models)
Single-Attempt GPT-4o + Moatless Tools

1 102 1040

0.5

1

Co
ve

ra
ge

 (
pa

ss
@

k)

MiniF2F-MATH (Formal Proofs)

1 102 1040

0.5

1
CodeContests

1 102 104
Number of Samples (k)

0

0.5

1

Co
ve

ra
ge

 (
pa

ss
@

k)

MATH (Oracle Verifier)

1 102 104
Number of Samples (k)

0

0.5

1 GSM8K (Oracle Verifier)

Llama-3-8B-Instruct Llama-3-70B-Instruct
Single-Attempt GPT-4o

Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one generated sample)
increases as we scale the number of samples. Notably, using repeated sampling, we are able to increase the solve rate
of an open-source method from 15.9% to 56% on SWE-bench Lite.

2.1 Repeated Sampling is Effective Across Tasks

Here, we establish that repeated sampling improves coverage across multiple tasks and a range
of sample budgets. We evaluate Llama-3-8B-Instruct and Llama-3-70B-Instruct on CodeContests,
MiniF2F, GSM8K, and MATH, generating 10,000 independent samples per problem. For SWE-
bench Lite, we use DeepSeek-V2-Coder-Instruct [19], as the required context length of this task
exceeds the limits of the Llama-3 models. As is standard when solving SWE-bench issues, we equip
our LLM with a software framework that provides the model with tools for navigating through
and editing codebases. In our work, we use the open-source Moatless Tools library [62]. Note that
solving a SWE-bench issue involves a back-and-forth exchange between the LLM and Moatless Tools.
One sample/attempt for this benchmark refers to one entire multi-turn trajectory. To minimize
costs, we restrict the number of attempts per issue to 250, with all attempts made independently of
one another.

We report our results in Figure 2. We also include the single-attempt performance of GPT-4o on
each task, as well the single-attempt state-of-the-art for SWE-bench Lite (CodeStory Aide [1] which
uses a combination of GPT-4o and Claude 3.5 Sonnet). Across all five tasks, we find that coverage
smoothly improves as the sample budget increases. When all LLMs are given a single attempt,
GPT-4o outperforms the Llama and DeepSeek models at every task. However, as the number of
samples increases, all three of the weaker models exceed GPT-4o’s single-attempt performance. In
the case of SWE-bench Lite, we solve 56% of problems, exceeding the single-attempt SOTA of 43%.

2.2 Repeated Sampling is Effective Across Model Sizes and Families

The results from Section 2.1 indicate that repeated sampling improves coverage. However, we only
show this trend for three recent, instruction-tuned models with 8B or more parameters. We now
show that these trends hold across other model sizes, families, and levels of post-training. We
expand our evaluation to include a broader set of models:

• Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.

• Gemma: Gemma-2B, Gemma-7B [48].

5

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

MATH (Oracle Verifier)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0 CodeContests

Llama-3-8B
Pythia-70M

Llama-3-8B-Instruct
Pythia-160M

Llama-3-70B-Instruct
Pythia-410M

Gemma-2B
Pythia-1B

Gemma-7B
Pythia-1.4B

Pythia-2.8B Pythia-6.9B Pythia-12B

Llama-3-8B
Pythia-70M

Llama-3-8B-Instruct
Pythia-160M

Llama-3-70B-Instruct
Pythia-410M

Gemma-2B
Pythia-1B

Gemma-7B
Pythia-1.4B

Pythia-2.8B Pythia-6.9B Pythia-12B

Figure 3: Scaling inference time compute via repeated sampling leads to consistent coverage gains across a variety of
model sizes (70M-70B), families (Llama, Gemma and Pythia) and levels of post-training (Base and Instruct models).

• Pythia: Pythia-70M through Pythia-12B (eight models in total) [9].

We restrict evaluation to the MATH and CodeContests datasets to minimize inference costs,
reporting results in Figure 3. Coverage increases across almost every model we test, with smaller
models showing some of the sharpest increases in coverage when repeated sampling is applied. On
CodeContests, the coverage of Gemma-2B increases by over 300x, from a pass@1 of 0.02% to a
pass@10k of 7.1%. Similarly, when solving MATH problems with Pythia-160M, coverage increases
from a pass@1 of 0.27% to a pass@10k of 57%.

The exception to this pattern of increasing coverage across models is with the Pythia family
evaluated on CodeContests. All Pythia models achieve zero coverage on this dataset, even with a
budget of 10,000 samples. We speculate that this due to Pythia being trained on less coding-specific
data than Llama and Gemma.

2.3 Repeated Sampling Can Help Balance Performance and Cost

One takeaway from the results in Sections 2.1 and 2.2 is that repeated sampling makes it possible
to amplify a weaker model’s capabilities and outperform single samples from stronger models. Here,
we demonstrate that this amplification can be more cost-effective than using a stronger, more
expensive model, providing practitioners with a new degree of freedom when trying to jointly
optimize performance and costs.

We first consider FLOPs as a cost metric, examining the Llama-3 results from Section 2.1. We
re-plot our results from Figure 2, now visualizing coverage as a function of total inference FLOPs
instead of the sample budget. Since Llama-3 models are dense transformers where the majority of
parameters are used in matrix multiplications, we approximate inference FLOPs with the formula:

FLOPs per token ≈ 2 ∗ (num parameters + 2 ∗ num layers ∗ token dim ∗ context length)
total inference FLOPs ≈ num prompt tokens ∗ FLOPs per token

+ num decoded tokens ∗ FLOPs per token ∗ num completions

6

1014 1015 1016 1017

Total Inference FLOPs
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

MiniF2F-MATH

1014 1015 1016 1017

Total Inference FLOPs
0.0

0.2

0.4

0.6

0.8

1.0
CodeContests

1013 1014 1015 1016 1017

Total Inference FLOPs
0.0

0.2

0.4

0.6

0.8

1.0
MATH (Oracle Verifier)

1013 1014 1015 1016 1017

Total Inference FLOPs
0.0

0.2

0.4

0.6

0.8

1.0
GSM8K (Oracle Verifier)

Llama-3-8B-Instruct Llama-3-70B-Instruct

Figure 4: Comparing cost, measured in number of inference FLOPs, and coverage for Llama-3-8B-Instruct and Llama-
3-70B-Instruct. We see that the ideal model size depends on the task, compute budget, and coverage requirements.
Note that Llama-3-70B-Instruct does not achieve 100% coverage on GSM8K due to an incorrectly labelled ground
truth answer: see Appendix E.

Model
Cost per
attempt
(USD)

Number of
attempts

Issues
solved (%)

Total Cost
(USD)

Relative
Total Cost

DeepSeek-V2-Coder-Instruct 0.008 5 29.62 12 1x
GPT-4o 0.13 1 24.00 39 3.25x
Claude 3.5 Sonnet 0.17 1 26.70 51 4.25x

Table 1: Comparing API cost (in US dollars) and performance for various models on the SWE-bench Lite dataset
using the Moatless Tools agent framework. When sampled more, the open-source DeepSeekCoder-V2 model can
achieve the same issue solve-rate as closed-source frontier models for under a third of the price.

We present our re-scaled results for MiniF2F, CodeContests, MATH, and GSM8K in Figure 4.
Interestingly, the model that maximizes coverage varies with the compute budget and task. On
MiniF2F, GSM8K and MATH, Llama-3-8B-Instruct always obtains higher coverage than the larger
(and more expensive) 70B model when the FLOP budget is fixed. However for CodeContests, the
70B model is almost always more cost effective. We note that examining FLOPs alone can be a crude
cost metric that ignores other aspects of system efficiency [20]. In particular, repeated sampling can
make use of high batch sizes and specialized optimizations that improve system throughput relative
to single-attempt inference workloads [32, 6, 61]. We discuss this in more detail in Section 5.

We also examine the dollar costs of repeated sampling when solving SWE-bench Lite issues
using current API pricing. Keeping the agent framework (Moatless Tools) constant, we consider
making a single attempt per issue with Claude 3.5 Sonnet and GPT-4o, as well as repeated sampling
using DeepSeek-V2-Coder-Instruct. We report the average cost per issue and issue resolution rate
with each approach in Table 1. While the DeepSeek model is weaker than the GPT and Claude
models, it is also over 10x cheaper. In this case, repeated sampling provides a cheaper alternative
to paying a premium for access to strong models while achieving a superior issue solve rate.

3 Characterizing the Benefits of Repeated Sampling

The relationship between an LLM’s loss and its training compute has been well-characterized with
training scaling laws [25, 33, 26]. These laws have empirically held over many orders of magnitude
and inspire confidence in model developers that large investments in training will pay off. Inspired

7

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Llama-3-8B-Instruct
MATH (Oracle Verifier)

(a=-0.59, b=-0.39)

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
MATH (Oracle Verifier)

(a=-0.34, b=-0.4)

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

Llama-3-8B-Instruct
CodeContests

(a=-1.69, b=-0.11)

100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
CodeContests

(a=-1.11, b=-0.11)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Pythia-70M
MATH (Oracle Verifier)

(a=-3.3, b=-0.18)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-12B
MATH (Oracle Verifier)

(a=-1.7, b=-0.35)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Gemma-2B
MATH (Oracle Verifier)

(a=-1.07, b=-0.36)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-8B-Instruct
MiniF2F-MATH

(a=-0.58, b=-0.08)

Coverage Power Law Fit, c = exp(ak b)

Figure 5: The relationship between coverage and the number of samples can be modelled with an exponentiated power
law for most tasks and models. We highlight that some curves, such as Llama-3-8B-Instruct on MiniF2F-MATH, do
not follow this trend closely.

by training scaling laws, here we aim to better characterize the relationship between coverage and
the sample budget (i.e. the amount of inference compute), presenting two interesting observations:

1. The relationship between coverage and the number of samples can often be modelled with an
exponentiated power law.

2. For a given task, the coverage curves of different models from the same family resemble
S-curves with similar slopes but distinct horizontal offsets.

3.1 Scaling Laws for Repeated Sampling

Here, we develop an explicit model for the relationship between coverage and the number of samples.
The GPT-4 technical report [41] finds that the relationship between a model’s mean-log-pass-rate
on coding problems and its training compute can be modelled well using a power law. We start
by adopting the same function class, but now modelling the log of coverage c as a function of the
number of samples k:

log(c) ≈ ak−b (2)

where a, b ∈ R are fitted model parameters. In order to directly predict coverage, we exponentiate
both sides, ending up with the final model of:

c ≈ exp(ak−b) (3)

We provide examples of fitted coverage curves in Figure 5, and additional curves in Appendix C.2.
While these laws are not as exact as training scaling laws (most strikingly on MiniF2F-MATH),
they provide encouraging early evidence that the benefits of inference scaling can be characterized.

8

100 102 104

k / pass@k 1(0.46)

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)
Llama-3

MATH (Oracle Verifier)

Llama-3-8B
Llama-3-8B-Instruct
Llama-3-70B-Instruct

100 101 102 103 104

k / pass@k 1(0.19)

0.0

0.2

0.4

0.6

0.8

1.0

Gemma
MATH (Oracle Verifier)

Gemma-2B
Gemma-7B

100 102 104

k / pass@k 1(0.02)

0.0

0.2

0.4

0.6

0.8

1.0

Pythia
MATH (Oracle Verifier)

Pythia-70M
Pythia-160M
Pythia-410M
Pythia-1B
Pythia-1.4B
Pythia-2.8B
Pythia-6.9B
Pythia-12B

10 1 101 103

k / pass@k 1(0.07)

0.0

0.2

0.4

0.6

0.8

1.0

Llama-3
CodeContests

Llama-3-8B-Instruct
Llama-3-70B-Instruct
Llama-3-8B

Figure 6: Overlaying the coverage curves from different models belonging to the same family. We perform this overlay
by horizontally shifting every curve (with a logarithmic x-axis) so that all curves pass through the point (1, c). We pick
c to be the maximum pass@1 score over all models in the plot. We note that the similarity of the curves post-shifting
shows that, within a model family, sampling scaling curves follow a similar shape.

3.2 Similarities in Coverage Curves Across Models

Interestingly, when comparing the coverage curves (with a logarithmic x-axis) of different models
from the same family on the same task (see Figure 3), it appears that the traced S-curves have the
same slope, but unique horizontal offsets. To investigate this further, we overlay the coverage curves
of different models from the same family in Figure 6. We do this by picking an anchor coverage
value c, and shifting every curve leftward (in log-space) so that each passes through the point (1, c).
This corresponds to a leftward shift by log(pass@k−1(c)), where pass@k−1(c) denotes the closest
natural number k such that pass@k = c. We pick c to be the maximum pass@1 score over all models
from the same family. These similarities demonstrate that across models from the same family, the
increase in the log-sample-budget (or equivalently, the multiplicative increase in the sample budget)
needed to improve coverage from c to c′ is approximately constant.

4 Harnessing Repeated Sampling Requires Precision

So far, we have focused on measuring model coverage, characterizing the benefits of repeated
sampling under the best-case scenario where we can always identify correct model samples. We
now turn to the complementary problem of precision: given a collection of model samples, can we
identify the correct ones? In Section 4.1, we evaluate two common verification methods (majority
voting and reward model scoring) on GSM8K and MATH. Additionally, in Section 4.2, we discuss
potential pitfalls when relying on unit tests to identify correct software programs.

4.1 Common Verification Methods Don’t Always Scale with the Sample Budget

Of the five tasks we evaluate, only GSM8K and MATH lack tools for automatically verifying
solutions. Here, we evaluate two common approaches to deciding on a final answer: calculating a
majority vote across samples and using a reward model to assign a score to each sample. We test
these techniques on their ability to identify correct solutions from the 10,000 samples we generated
with Llama-3-8B-Instruct and Llama-3-70B-Instruct in Section 2. We benchmark three methods:

1. Majority Vote: We pick the most common final answer [55].

9

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Llama-3-8B-Instruct
GSM8K

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
GSM8K

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
MATH

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-8B-Instruct
MATH

Majority Vote Reward Model + Best-of-N Reward Model + Majority Vote Coverage (pass@k)

Figure 7: Comparing coverage (performance with an oracle verifier) to mainstream methods available for picking the
correct answer (majority voting, reward model selection and reward model majority voting) as we increase the number
of samples. Although near-perfect coverage is achieved, all sample selection methods fail to reach the coverage upper
bound and saturate before reaching 100 samples. For every k value, we calculate the metric on 100 subsets of size k
then plot the mean and one standard deviation across subsets.

2. Reward Model + Best-of-N: We use a reward model [17] to score each solution, and pick
the answer from the highest-scoring sample.

3. Reward Model + Majority Vote: We calculate a majority vote where each sample is
weighted by its reward model score.

We use ArmoRM-Llama3-8B-v0.1 [53] as a reward model, which currently has the highest
reasoning score on the RewardBench leaderboard [35] among open-weight models. We report our
results in Figure 7 as we increase the number of samples. While success rate initially increases with
the number of samples for all three methods, it plateaus around 100 samples. Meanwhile, coverage
continues to increase with the number of samples and exceeds 95%.

In the case of majority voting, this success rate saturation is easily explainable. As the number
of samples increases, the proportion of votes allocated to each answer stabilizes, and therefore the
success rate plateaus. For some GSM8K and MATH problems, correct solutions are sampled with
a probability of 1% or lower (see Figure 8), making them a minority of samples. As the number
of samples increases, rare correct solutions will appear for more problems, increasing coverage but
not the success rate with majority voting. In order to fully benefit from repeated sampling, sample
identification methods must be able to solve these “needle-in-a-haystack” cases and identify rare,
correct samples.

Given the poor performance of the reward model, it is reasonable to wonder how “hard” it is
to verify a candidate solution. With GSM8K and MATH, only a sample’s final answer is used for
assessing correctness, with the intermediate chains of thought being excluded. If models generated
only non-sensical chains of thought before guessing a correct final answer, verification may not be
any easier than solving the problem in the first place. We investigate this question by manually
evaluating 105 chains of thought from correct Llama-3-8B-Instruct solutions to GSM8K problems,
reporting our results in Table 2. We find that over 90% of the chains of thought that we graded
are faithful, even among problems where correct answers are generated infrequently. These correct
reasoning steps indicate that there is signal for a verifier to exploit when identifying correct samples.
Interestingly, during this process we also identified one GSM8K problem that has an incorrect
ground truth answer (see Appendix E). This incorrect GSM8K problem is also the only one that
Llama-3-70B-Instruct did not generate a “correct” sample for across 10,000 attempts.

10

Pass@1 # Problems # CoT Graded Correct CoT Incorrect CoT Incorrect Ground Truth

0-10% 5 15 11 1 1 problem, 3 CoTs
10-25% 10 30 27 3 0 problems
25-75% 29 30 28 2 0 problems
75-100% 84 30 30 0 0 problems

Table 2: Human evaluation of the validity of the Chain-of-Thought reasoning in Llama-3-8B-Instruct answers to
GSM8K problems. 3 chains of thought were graded per problem. Even for difficult questions, where the model only
gets ≤ 10% of samples correct, the CoTs almost always follow valid logical steps. For the model generations and
human labels, see here.

4.2 Verifiers and Software Tasks: Two Cautionary Tales

Software development tasks can occupy a middle-ground with respect to available verification tools.
On one hand, the ability to execute and test code allows for a higher degree of automatic verification
than is possible with unstructured language tasks. However, tools like unit tests take a black-box
approach to verifying a piece of code and are not as comprehensive as methods like proof checkers.
These imperfections in the verification process can lead to false positives and/or false negatives that
are important to consider when applying repeated sampling. Below we provide two examples of
software verifier imperfections that we encountered when generating our results from Section 2.1.

4.2.1 Flaky Tests in SWE-bench Lite

When producing our results on SWE-bench Lite, we identified that 11.3% of problems have flaky
test suites that do not produce consistent results when running them on the same candidate solution.
These flaky tests occasionally classify even the dataset’s ground-truth issue solutions as incorrect.
Additionally, the test suites for some issues can be non-determinstic depending on the candidate
solution. For example, two SWE-bench Lite issues involve manipulating Python sets, which are
naturally unordered. The gold solutions for these issues explicitly order the items in the set and
pass the test suites reliably. However, some model-generated candidate solutions do not impose
such an ordering, and therefore pass the tests on some “lucky” runs and not others. In Appendix B,
we list all of the problem IDs where we identified flaky tests. We also report our SWE-bench Lite
results from Figure 2 with the problematic issues removed, finding similar results to our evaluations
on the whole dataset.

4.2.2 False Negatives in CodeContests

Each problem from the CodeContests dataset comes with a set of input-output test cases used to
asses the correctness of solutions. These test cases are more comprehensive than those from earlier
coding benchmarks like APPS [23], cutting down on the frequency of false positive solutions that
pass all test cases but do not fully solve the described problem. However, the construction of the
CodeContests test suites leads to false negative solutions that are correct but fail the tests.

For some CodeContests problems, the problem description allows for multiple distinct correct
outputs for a given test input. However, the corresponding test cases do not handle these scenarios,
instead requiring that one particular correct output is emitted. Additionally, many CodeContests
test cases have been programmatically generated by mutating original test cases from the problem.
Some mutated inputs violate the problem’s input specifications (e.g. a mutated input being zero
when the description promises a positive integer). These malformed test cases can lead to inconsistent
behaviour between different correct solutions.

11

https://docs.google.com/spreadsheets/d/1D-suvkheNA4fjLsO2TuwHNqwx2TIECmp

Figure 8: Bar charts showing the fraction of samples (out of 10,000 samples) that are correct, for each problem in the
subsets of GSM8K and MATH we evaluate on. There is one bar per problem, and the height of the bar corresponds to
the fraction of samples that arrive at the correct answer. Bars are green if self-consistency picked the correct answer
and are red otherwise. We highlight that there are many problems with correct solutions, where the correct solutions
are sampled infrequently.

We assess the prevalence of these issues by running each problem’s test suite on the list of
correct solutions that CodeContests provides. Of the 122 problems in the test set that have Python3
solutions, we find that 35 problems have “correct” solutions that fail the corresponding tests. Since
we do not allow models to view all of a problem’s test cases (and their peculiarities), applying
repeated sampling to these problems contains an element of “rolling the dice” to generate a solution
that is not only correct, but emits the particular outputs that pass the tests.

5 Discussion and Limitations

In this work, we explore repeated sampling as an axis for scaling compute at inference time in
order to improve model performance. Across a range of models and tasks, repeated sampling can
significantly improve the fraction of problems solved using any generated sample (i.e. coverage).
When correct solutions can be identified (either with automatic verification tools or other verification
algorithms), repeated sampling can amplify model capabilities during inference. This amplification
can make the combination of a weaker model and many samples more performant and cost-effective
than using fewer attempts from a stronger, more expensive model.

Improving Repeated Sampling: In our experiments, we explore only a simple version of repeated
sampling where all attempts to a problem are generated independently of one another using the
exact same prompt and hyperparameters. We believe that this setup can be refined to improve
performance, particularly along the following directions:

1. Solution Diversity: We currently rely on a positive sampling temperature as the sole mech-
anism for creating diversity among samples. Combining this token-level sampling with other,
higher-level approaches may be able to further increase diversity. For example, AlphaCode
conditions different samples with different metadata tags.

2. Multi-Turn Interactions: Despite automatic verification tools being available when solving
CodeContests and MiniF2F problems, we use only a single-turn setup where models generate
a solution without any ability to iterate on it. Providing models with execution feedback from
these tools should improve solution quality. We are interested in the tradeoffs associated with

12

multi-turn interactions, since each attempt becomes more expensive, but also may be more
likely to succeed.

3. Learning From Previous Attempts: Currently, our experiments fully isolate attempts
from each other. Access to existing samples, particularly if verification tools can provide
feedback on them, may be helpful when generating future attempts.

Repeated Sampling and Inference Systems: Repeated sampling is a distinct LLM inference
workload from serving chatbot requests. Production chatbot deployments place an emphasis on low
response latencies, and adhering to latency targets can force a lower per-device batch size and reduce
hardware utilization. In contrast, when sampling many completions to a single prompt, a larger
emphasis can be placed on overall throughput and maximizing hardware utilization. Additionally,
repeated sampling can benefit from specialized attention optimizations that exploit overlaps in
prompts across sequences [32, 6, 61]. Repeated sampling inference can therefore be accomplished
at a lower cost than naively making many parallel requests to a chatbot-oriented API. These cost
savings can further motivate choosing to sample many times from a cheaper model instead of fewer
times from a more expensive one.

Verifiers: Our results from Section 4 highlight the importance of improving sample verification
methods when tools for automatically doing so are unavailable. Equipping models with the ability
to assess their own outputs will allow repeated sampling to be scaled to far more tasks. Of particular
interest is applying repeated sampling to unstructured tasks like creative writing, which can require
a more subjective comparison between different samples than the pass-fail tasks we consider. An
alternative direction to developing model-based verifiers is to design converters that can make an
unstructured task verifiable, for example by formalizing an informal math statement into a language
like Lean so that proof checkers can be applied.

6 Related Work

Scaling Inference Compute: Methods that perform additional computation during inference have
been successful across many areas of deep learning. Across a variety of game environments, state-of-
the-art methods leverage inference-time search that examines many possible future game states before
deciding on a move [12, 45, 10]. Similar tree-based methods can also be effective in combination
with LLMs, allowing models to better plan and explore different approaches [58, 8, 49, 50]. Another
axis for increasing LLM inference compute allows models to spend tokens deliberating on a problem
before coming to a solution [57, 56, 59]. Additionally, multiple models can be ensembled together at
inference time to combine their strengths [54, 14, 40, 52, 29]. Yet another approach involves using
LLMs to critique and refine their own responses [39, 7].

Repeated Sampling: Previous work has demonstrated that repeated sampling can improve LLM
capabilities in multiple domains. One of the most effective use cases is coding [43, 15, 34], where
performance continues to scale up to a million samples and verification tools (e.g. unit tests) are
often available to automatically score every candidate solution. Recently, Greenblatt [22] shows that
repeated sampling is effective when solving puzzles from the ARC challenge [16], observing log-linear
scaling as the number of samples increases. In chat applications, repeated sampling combined with
best-of-N ranking with a reward model can outperform greedily sampling a single response [28]. In
domains without automatic verification tools, existing work shows that using majority voting [55] or

13

a trained model-based verifier [18, 38, 27] to decide on a final answer can improve performance on
reasoning tasks relative to taking a single sample. Concurrent with our work, Song et al. [46] finds
that using the best available sample improves LLM performance on chat, math, and code tasks,
sweeping up to a max of 128 samples.

Scaling Laws: Characterizing how scaling affects model performance can lead to more informed
decisions on how to allocate resources. Scaling laws for LLM training find a power law relationship
between loss and the amount of training compute and provide estimates for the optimal model and
dataset size given a fixed compute budget [25, 33, 26]. Jones [31] finds scaling laws in the context
of the board game Hex, observing that performance scales predictably with model size and the
difficulty of the problem. Interestingly, they also show that performance scales with the amount of
test-time compute spent while performing tree search. Recently, Shao et al. [44] observe scaling
laws when augmenting LLMs with external retrieval datasets, finding that performance on retrieval
tasks scales smoothly with the size of the retrieval corpus.

7 Acknowledgements

We thank Together AI for partially sponsoring the compute for this project, as well as Rahul
Chalamala and Ben Athiwaratkun for their help managing this infrastructure. We thank John Yang
for his advice and support when running our SWE-bench experiments. Finally, we are grateful to
Mayee Chen, Neel Guha, Quinn McIntyre, Jon Saad-Falcon, and Benjamin Spector for their helpful
discussions and feedback throughout this project.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under
Nos. CCF2247015 (Hardware-Aware), CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to
Velocity), and 1937301 (RTML); US DEVCOM ARL under Nos. W911NF-23-2-0184 (Long-context)
and W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under Nos. N000142312633 (Deep
Signal Processing); Stanford HAI under No. 247183; NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices,
Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for Research program, the Stanford
Data Science Initiative (SDSI), and members of the Stanford DAWN project: Meta, Google, and
VMWare. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views, policies, or endorsements, either expressed or implied, of NIH, ONR, or the U.S.
Government.

This work was completed with the support of the Clarendon Fund Scholarships.

14

References

[1] Aide.dev, 2024. URL https://aide.dev/.

[2] Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

[3] Meta llama 3, 2024. URL https://llama.meta.com/llama3/.

[4] Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/claude-3-5-sonnet.

[5] Voyage ai, 2024. URL https://www.voyageai.com/.

[6] Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian
Ding, Qing Sun, Jun Wang, Jiacheng Guo, Liangfu Chen, Parminder Bhatia, Ramesh Nallapati,
Sudipta Sengupta, and Bing Xiang. Bifurcated attention: Accelerating massively parallel
decoding with shared prefixes in llms, 2024. URL https://arxiv.org/abs/2403.08845.

[7] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine
Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli
Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal
Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton,
Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben
Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan.
Constitutional ai: Harmlessness from ai feedback, 2022.

[8] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, and Torsten
Hoefler. Graph of thoughts: Solving elaborate problems with large language models. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(16):17682–17690, March 2024. ISSN
2159-5399. doi: 10.1609/aaai.v38i16.29720. URL http://dx.doi.org/10.1609/aaai.v38i16.

29720.

[9] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

[10] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement
learning and search for imperfect-information games. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

15

https://aide.dev/
https://openai.com/index/hello-gpt-4o/
https://llama.meta.com/llama3/
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.voyageai.com/
https://arxiv.org/abs/2403.08845
http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2005.14165

[12] Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu. Deep blue. Artif. Intell., 134
(1–2):57–83, jan 2002. ISSN 0004-3702. doi: 10.1016/S0004-3702(01)00129-1. URL https:

//doi.org/10.1016/S0004-3702(01)00129-1.

[13] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process
supervision without process, 2024.

[14] Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and
James Zou. Are more llm calls all you need? towards scaling laws of compound inference
systems, 2024. URL https://arxiv.org/abs/2403.02419.

[15] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:

//arxiv.org/abs/2107.03374.

[16] François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/1911.

01547.

[17] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences, 2017. URL https://arxiv.org/abs/

1706.03741.

[18] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems, 2021.

[19] DeepSeek-AI et al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language
model, 2024. URL https://arxiv.org/abs/2405.04434.

[20] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency
misnomer, 2022. URL https://arxiv.org/abs/2110.12894.

[21] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A
framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/

records/10256836.

[22] Ryan Greenblatt. Geting 50 https://www.lesswrong.com/posts/Rdwui3wHxCeKb7feK/

getting-50-sota-on-arc-agi-with-gpt-4o, 2024.

16

https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
https://arxiv.org/abs/2403.02419
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2110.12894
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://www.lesswrong.com/posts/Rdwui3wHxCeKb7feK/getting-50-sota-on-arc-agi-with-gpt-4o
https://www.lesswrong.com/posts/Rdwui3wHxCeKb7feK/getting-50-sota-on-arc-agi-with-gpt-4o

[23] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding
challenge competence with apps, 2021.

[24] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[25] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is
predictable, empirically, 2017. URL https://arxiv.org/abs/1712.00409.

[26] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/

2203.15556.

[27] Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and
Rishabh Agarwal. V-star: Training verifiers for self-taught reasoners, 2024.

[28] Robert Irvine, Douglas Boubert, Vyas Raina, Adian Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei
Korshuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, Christie-Carol Beauchamp, Xiaoding Lu,
Thomas Rialan, and William Beauchamp. Rewarding chatbots for real-world engagement with
millions of users, 2023. URL https://arxiv.org/abs/2303.06135.

[29] Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion, 2023. URL https://arxiv.org/abs/2306.02561.

[30] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.
URL https://arxiv.org/abs/2310.06770.

[31] Andy L. Jones. Scaling scaling laws with board games, 2021. URL https://arxiv.org/abs/

2104.03113.

[32] Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia
Mirhoseini. Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint
arXiv:2402.05099, 2024.

[33] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

[34] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and
Percy Liang. Spoc: Search-based pseudocode to code, 2019. URL https://arxiv.org/abs/

1906.04908.

[35] Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
Hajishirzi. Rewardbench: Evaluating reward models for language modeling, 2024. URL
https://arxiv.org/abs/2403.13787.

17

https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2303.06135
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2104.03113
https://arxiv.org/abs/2104.03113
https://arxiv.org/abs/1906.04908
https://arxiv.org/abs/1906.04908
https://arxiv.org/abs/2403.13787

[36] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with
language models, 2022. URL https://arxiv.org/abs/2206.14858.

[37] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203.
doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

[38] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023.

[39] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

[40] Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data,
2024. URL https://arxiv.org/abs/2406.18665.

[41] OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

[42] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[43] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan
Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2023. URL https://arxiv.org/abs/2308.12950.

[44] Rulin Shao, Jacqueline He, Akari Asai, Weijia Shi, Tim Dettmers, Sewon Min, Luke Zettlemoyer,
and Pang Wei Koh. Scaling retrieval-based language models with a trillion-token datastore,
2024. URL https://arxiv.org/abs/2407.12854.

[45] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm, 2017.

[46] Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen Lin. The good, the bad, and the greedy:
Evaluation of llms should not ignore non-determinism, 2024. URL https://arxiv.org/abs/

2407.10457.

[47] Gemini Team et al. Gemini: A family of highly capable multimodal models, 2024. URL
https://arxiv.org/abs/2312.11805.

18

https://arxiv.org/abs/2206.14858
http://dx.doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2406.18665
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2407.12854
https://arxiv.org/abs/2407.10457
https://arxiv.org/abs/2407.10457
https://arxiv.org/abs/2312.11805

[48] Gemma Team et al. Gemma: Open models based on gemini research and technology, 2024.
URL https://arxiv.org/abs/2403.08295.

[49] Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Haitao Mi, and Dong Yu. Toward
self-improvement of llms via imagination, searching, and criticizing, 2024. URL https://

arxiv.org/abs/2404.12253.

[50] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024. ISSN 1476-4687. doi:
10.1038/s41586-023-06747-5. URL https://doi.org/10.1038/s41586-023-06747-5.

[51] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[52] Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge
fusion of large language models, 2024. URL https://arxiv.org/abs/2401.10491.

[53] Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable
preferences via multi-objective reward modeling and mixture-of-experts, 2024. URL https:

//arxiv.org/abs/2406.12845.

[54] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents
enhances large language model capabilities, 2024. URL https://arxiv.org/abs/2406.04692.

[55] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models, 2023.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models, 2023.

[57] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models, 2022. URL https:

//arxiv.org/abs/2210.03629.

[58] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

[59] Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL
https://arxiv.org/abs/2403.09629.

[60] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

19

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2404.12253
https://arxiv.org/abs/2404.12253
https://doi.org/10.1038/s41586-023-06747-5
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.12845
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2403.09629

[61] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu,
Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying
Sheng. Sglang: Efficient execution of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

[62] Albert Örwall. Moatless tools. https://github.com/aorwall/moatless-tools/tree/

a1017b78e3e69e7d205b1a3faa83a7d19fce3fa6, 2024.

20

https://arxiv.org/abs/2312.07104
https://github.com/aorwall/moatless-tools/tree/a1017b78e3e69e7d205b1a3faa83a7d19fce3fa6
https://github.com/aorwall/moatless-tools/tree/a1017b78e3e69e7d205b1a3faa83a7d19fce3fa6

A Sampling Experimental Setup

A.1 Lean Formal Proofs

We report results on the 130 questions in the test set of the lean4 MiniF2F dataset that correspond
to formalized MATH problems. This dataset is derived from the fixed version of the original MiniF2F
dataset created by Zheng et al. [60]. We sample with a temperature of 0.5 and do not use nucleus
sampling. We generated 10, 000 samples per problem. We use proofs of the following 5 theorems
from the validation set as few-shot examples:

• mathd_algebra_116

• amc12_2000_p5

• mathd_algebra_132

• mathd_algebra_11

• mathd_numbertheory_84

Our prompt consists of:

1. Few shot examples.

2. Header imports present in each problem in the HuggingFace dataset cat-searcher/minif2f-lean4
dataset, an upload of the lean4 MiniF2F dataset.

3. The theorem definition. In order to avoid leaking information about how to solve the theorem
from its name, we replace the name of the theorem with theorem_i. i ∈ {1, 2, 3, 4, 5} for the
few-shot examples and i = 6 for the current problem.

We set 200 as the max token length for the generated solution. To grade solutions, we use the
lean-dojo 1.1.2 library with lean version 4.3.0-rc2. We set a timeout of 10 seconds for every
tactic step.

21

https://github.com/rah4927/lean-dojo-mew/blob/main/MiniF2F/Test.lean
https://github.com/facebookresearch/miniF2F
https://github.com/rah4927/lean-dojo-mew/blob/main/MiniF2F/Validation.lean

Few-Shot Example

Write a lean4 proof to the provided formal statement. You have access to the standard
mathlib4 library.
```import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Nat.Log
import Mathlib.Data.Complex.Exponential
import Mathlib.NumberTheory.Divisors
import Mathlib.Data.ZMod.Defs
import Mathlib.Data.ZMod.Basic
import Mathlib.Topology.Basic
import Mathlib.Data.Nat.Digits

open BigOperators
open Real
open Nat
open Topology
theorem theorem1
Int.floor ((9:R) / 160 * 100) = 5 :=
by (
rw [Int.floor eq iff]
constructor
all goals norm num
)```

22



Example Prompt

Write a lean4 proof to the provided formal statement. You have access to the standard
mathlib4 library.
```import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Nat.Log
import Mathlib.Data.Complex.Exponential
import Mathlib.NumberTheory.Divisors
import Mathlib.Data.ZMod.Defs
import Mathlib.Data.ZMod.Basic
import Mathlib.Topology.Basic
import Mathlib.Data.Nat.Digits

open BigOperators
open Real
open Nat
open Topology
theorem theorem6
(b h v : R)
(h0 : 0 < b ∧ 0 < h ∧ 0 < v)
(h1 : v = 1 / 3 * (b * h))
(h2 : b = 30)
(h3 : h = 13 / 2) :
v = 65 :=
by (

A.2 CodeContests

We report results on the 140 test set questions that do not include image tags in the problem
description. We sample with a temperature of 0.6 and a top-p value of 0.95 following the experiments
in CodeLlama [43]. We generate 10,000 samples per problem. We use two few-shot examples from
the training set that are randomly sampled per-problem. We set 1024 as the max token length for the
generated solution. We use the same answer comparison function as [37] and use the concatenation
of public, private, and generated tests to validate correctness of solutions.

23

Few-Shot Example

Q: Write python code to solve the following coding problem that obeys the constraints and
passes the example test cases. The output code needs to read from and write to standard IO.
Please wrap your code answer using ```:
Petya has equal...
...
(Rest of question and input/output examples)
...
A: ```

n = int(input())

a = int(input())

b = int(input())

ans = 6

cnt = 0

cur = 2

cnt += 2 * ((n - b) // a)

while cnt < 4:

cur += 1

cnt += (n // a)

ans = min(ans, cur)

if b * 2 <= n:

cur, cnt = 0, 0

cur = 1

cnt += ((n - 2 * b) // a)

while cnt < 4:

cur += 1

cnt += (n // a)

ans = min(ans, cur)

print(ans)

```

Example Prompt

Q: Write python code to solve the following coding problem that obeys the constraints and
passes the example test cases. The output code needs to read from and write to standard IO.
Please wrap your code answer using ```:
This is the...
...
(Rest of question and input/output examples)
...
A:

A.3 MATH

We report results on 128 randomly selected test-set problems. We sample with a temperature of 0.6
and do not use nucleus sampling. We use the fixed 5 few-shot example from [36] for each problem.

24



We generate 10, 000 samples per problem. We set 512 as the max token length for the generated
solution. To grade solutions, we use the minerva_math functions from LMEval [21].

Few-Shot Example

Problem:
If detA = 2 and detB = 12, then find det(AB).
Solution:
We have that det(AB) = (detA)(detB) = (2)(12) = 24 . Final Answer: The final answer is
24. I hope it is correct.

Example Prompt

Problem:
What is the domain of the function

f(x) =
(2x− 3)(2x+ 5)

(3x− 9)(3x+ 6)
?

Express your answer as an interval or as a union of intervals.
Solution:

A.4 GSM8K

We report results on 128 randomly sampled test-set problems. We sample with a temperature of
0.6 and do not use nucleus sampling. We use 5 few-shot examples from the training set that are
randomly sampled per-problem. We generate 10, 000 samples per problem. We set 512 as the max
token length for the generated solution. To grade solutions, we follow LMEval [21].

Few-Shot Example

Question: James decides to replace his car. He sold his $20,000 car for 80% of its value and
then was able to haggle to buy a $30,000 sticker price car for 90% of its value. How much
was he out of pocket?
Answer: He sold his car for 20000*.8=$<<20000*.8=16000>>16,000 He bought the new
car for 30,000*.9=$<<30000*.9=27000>>27,000 That means he was out of pocket 27,000-
16,000=$<<27000-16000=11000>>11,000
#### 11000

Example Prompt

Question: Mary has 6 jars of sprinkles in her pantry. Each jar of sprinkles can decorate 8
cupcakes. Mary wants to bake enough cupcakes to use up all of her sprinkles. If each pan
holds 12 cupcakes, how many pans worth of cupcakes should she bake?
Answer:

25



B SWE-bench Lite

B.1 Experimental Setup

For our experiments, we use DeepSeek-V2-Coder-Instruct with the Moatless Tools agent framework
(at commit a1017b78e3e69e7d205b1a3faa83a7d19fce3fa6). We use Voyage AI [5] embeddings for
retrieval, the default used by Moatless Tools. We make no modifications to the model or framework,
using them entirely as off-the-shelf components.

With this setup, we sample 250 independent completions for each problem using standard
temperature-based sampling. To determine the optimal sampling temperature, we conducted a
sweep on a random subset of 50 problems from the test set, testing temperatures of 1.0, 1.4, 1.6,
and 1.8. Based on these results, we selected a temperature of 1.6 for our main experiments.

B.2 Test Suite Flakiness

During our analysis, we identified 34 problems in SWE-bench Lite whose test suites had flaky
tests. Using the SWE-bench testing harness provided by the authors of SWE-bench, we tested each
solution repeatedly: for some solutions, sometimes the solution was marked as correct, and other
times it was marked as incorrect. In 30 of these 34 cases, we observed flakiness even on the correct
solutions provided by the dataset authors. Table 3 lists the problem IDs of the 34 instances with
flaky tests.

Table 3: Instance IDs of problems from SWE-bench Lite that have flaky tests.

Repository Instance IDs

django django django-13315, django django-13447, django django-13590,

django django-13710, django django-13757, django django-13933,

django django-13964, django django-14017, django django-14238,

django django-14382, django django-14608, django django-14672,

django django-14752, django django-14915, django django-14997,

django django-14999, django django-15320, django django-15738,

django django-15790, django django-15814, django django-15819,

django django-16229, django django-16379, django django-16400,

django django-17051

sympy sympy sympy-13146, sympy sympy-13177, sympy sympy-16988

requests psf requests-863, psf requests-2317,

psf requests-2674, psf requests-3362

scikit-learn scikit-learn scikit-learn-13241

matplotlib matplotlib matplotlib-23987

An additional instance, astropy astropy-6938, was flaky on some machines and not others. The
authors of SWE-bench were able to reproduce the flakyness; however, we were unable to. Our
prelimiary investigation indicates this specific issue is due to unpinned versions of dependencies in
the docker environments that run the unit tests.

Here, we include results on a subset with the problems in Table 3 removed (266 problems). For
the full dataset evaluation, on any problem that has flaky tests, we run the test suite 11 times and
use majority voting to determine whether a solution passed or failed. For the evaluation on the
subset without flaky tests, all baselines we compare against release which problems they correctly
solve, so we simply removed the problems with flaky tests and recomputed their scores.

26



Figure 9: SWE-bench Lite results, without and with problems that have flaky tests. For the graph on the left, all
problems in Table 3 are excluded. For the graph on the right, all problems are included. We note that the trend is the
same with or without the flaky tests.

C Scaling Law Details

C.1 Experimental details

To fit exponentiated power laws to coverage curves, we first sample 40 points spaced evenly along a
log scale from 0 to 10, 000 and remove duplicates. We then use SciPy’s [51] curve_fit function to
find the a and b parameters from Equation 3 that best fit these points.

C.2 Additional results

In Figure 10, we show additional results fitting power laws to coverage curves for an expanded set
of datasets and models.

27



100 101 102

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0
Co

ve
ra

ge
 (

pa
ss

@
k)

DeepSeek-Coder-V2-Instruct + Moatless Tools
SWE-bench Lite

(a=-0.76, b=-0.21)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-8B
MATH (Oracle Verifier)

(a=-0.86, b=-0.39)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Gemma-7B
MATH (Oracle Verifier)

(a=-0.73, b=-0.42)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Pythia-160M
MATH (Oracle Verifier)

(a=-2.79, b=-0.27)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-410M
MATH (Oracle Verifier)

(a=-2.34, b=-0.28)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-1B
MATH (Oracle Verifier)

(a=-2.21, b=-0.29)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Pythia-1.4B
MATH (Oracle Verifier)

(a=-2.02, b=-0.32)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-2.8B
MATH (Oracle Verifier)

(a=-1.78, b=-0.33)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Pythia-6.9B
MATH (Oracle Verifier)

(a=-1.83, b=-0.34)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Gemma-2B
CodeContests

(a=-3.71, b=-0.14)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Gemma-7B
CodeContests

(a=-1.97, b=-0.13)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
MiniF2F-MATH

(a=-0.59, b=-0.09)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (
pa

ss
@

k)

Llama-3-8B-Instruct
GSM8K (Oracle Verifier)

(a=-0.12, b=-0.8)

100 101 102 103 104

Number of Samples (k)
0.0

0.2

0.4

0.6

0.8

1.0

Llama-3-70B-Instruct
GSM8K (Oracle Verifier)

(a=-0.02, b=-0.36)

Coverage Power Law Fit, c = exp(ak b)

Figure 10: Fitting exponentiated power laws to coverage curves for an expanded set of tasks and models.

28



D Precision Details

To calculate the Majority Vote, Reward Model + Best-of-N and Reward Model + Majority Vote
metrics, we use the same 128 problem subsets for both MATH and GSM8K datasets introduced in
Section 2. Each problem corresponds to 10,000 samples for each model we test. For each verification
method, we take 100 random subsets of size k and calculate the success rate using each subset. We
report the mean and standard deviation across subsets in Figure 7. To calculate the Majority Vote
answer, we take the plurality answer in each subset. For the Reward Model + Best-of-N, we take
the answer with the highest score assigned by the reward model. For the Reward Model + Majority
Vote metric, we sum the reward model score across all the samples with the same final answer, and
use the final answer with the highest sum.

29



E GSM8K incorrect answer

As discussed in 4.1, we identify that a problem in the GSM8K test set (index 1042 on HuggingFace)
has an incorrect ground truth solution.

Question

Johnny’s dad brought him to watch some horse racing and his dad bet money. On the first
race, he lost $5. On the second race, he won $1 more than twice the amount he previously
lost. On the third race, he lost 1.5 times as much as he won in the second race. How much
did he lose on average that day?

Answer

On the second race he won $11 because 1 + 5× 2 =<< 1 + 5 ∗ 2 = 11 >> 11
On the third race he lost $15 because 10× 1.5 =<< 10 ∗ 1.5 = 15 >> 15
He lost a total of $20 on the first and third races because 15 + 5 =<< 15 + 5 = 20 >> 20
He lost $9 that day because 11− 20 =<< 11− 20 = −9 >> −9
He lost an average of $3 per race because 9/3 =<< 9/3 = 3 >> 3
#### 3

The mistake is in the second line of the answer: on the third race, Johnny’s dad lost $16.5, not $15,
meaning he made $11 and lost $16.5+ $5 = $21.5. So, the answer is an average loss of $3.5 per race,
not $3 per race (the answer in the dataset).

30

https://huggingface.co/datasets/openai/gsm8k/viewer/main/test?row=1042

	Introduction
	Scaling Repeated Sampling
	Repeated Sampling is Effective Across Tasks
	Repeated Sampling is Effective Across Model Sizes and Families
	Repeated Sampling Can Help Balance Performance and Cost

	Characterizing the Benefits of Repeated Sampling
	Scaling Laws for Repeated Sampling
	Similarities in Coverage Curves Across Models

	Harnessing Repeated Sampling Requires Precision
	Common Verification Methods Don't Always Scale with the Sample Budget
	Verifiers and Software Tasks: Two Cautionary Tales
	Flaky Tests in SWE-bench Lite
	False Negatives in CodeContests


	Discussion and Limitations
	Related Work
	Acknowledgements
	Sampling Experimental Setup
	Lean Formal Proofs
	CodeContests
	MATH
	GSM8K

	SWE-bench Lite
	Experimental Setup
	Test Suite Flakiness

	Scaling Law Details
	Experimental details
	Additional results

	Precision Details
	GSM8K incorrect answer

