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Abstract

Large Language Models (LLMs) have dramatically advanced AI appli-
cations, yet their deployment remains challenging due to their immense
inference costs. Recent studies ameliorate the computational costs of LLMs
by increasing their activation sparsity but suffer from significant perfor-
mance degradation on downstream tasks. In this work, we introduce a
new framework for sparsifying the activations of base LLMs and reduc-
ing inference costs, dubbed Contextually Aware Thresholding for Sparsity
(CATS). CATS is relatively simple, easy to implement, and highly effective.
At the heart of our framework is a new non-linear activation function. We
demonstrate that CATS can be applied to various base models, including
Mistral-7B and Llama2-7B, and outperforms existing sparsification tech-
niques in downstream task performance. More precisely, CATS-based
models often achieve downstream task performance within 1-2% of their
base models without any fine-tuning and even at activation sparsity levels
of 50%. Furthermore, CATS-based models converge faster and display
better task performance than competing techniques when fine-tuning is
applied. Finally, we develop a custom GPU kernel for efficient implemen-
tation of CATS that translates the activation of sparsity of CATS to real
wall-clock time speedups. Our custom kernel implementation of CATS
results in a ∼15% improvement in wall-clock inference latency of token
generation on both Llama-7B and Mistral-7B.

1 Introduction

LLMs have demonstrated remarkable success across a variety of fields (Devlin et al., 2018;
Brown et al., 2020; Achiam et al., 2023; Brohan et al., 2023). However, the scientific progress
achieved by these models comes with significant costs. The training of GPT-3 is estimated
to have consumed over 3,000,000 GPU-hours and emitted three thousand times the CO2
equivalent of a round-trip flight from San Francisco to New York (Patterson et al., 2021).
Furthermore, inference costs often eclipse training costs for models that serve trillions of
queries. As such, there is significant interest in reducing the inference costs of LLMs while
preserving task performance.

Various techniques have been proposed to mitigate LLM inference costs. These approaches
are often based on quantization (Frantar et al., 2022; Dettmers et al., 2022), pruning (Ma
et al., 2023; Sun et al., 2023), and other forms of weight sparsification Frantar & Alistarh
(2023). Mixture of Experts (MoE) techniques have emerged as particularly promising and
are employed by current state-of-the-art LLMs (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022c; Jiang et al., 2024).
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(a) Llama2 Layer 0.
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(b) Llama2 Layer 15.
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(c) Llama2 Layer 31.
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(d) Mistral7B Layer 0.
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(e) Mistral7B Layer 15.
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(f) Mistral7B Layer 31.

Figure 1: Histogram of post-MLP activations different layers in different models. Subfigures
(a), (b), and (c) correspond to Layers 0, 15, and 31 in Llama2-7B, respectively. Subfigures
(d), (e), and (f) correspond to Layers 0, 15, and 31 in Mistral-7B, respectively. The absolute
threshold indicates 50% sparsity, where values smaller than the threshold are considered
negligible in our technique and thus zeroed out.

MoE techniques activate only a subset of parameters at each inference stage, thereby re-
ducing memory and computational requirements compared to using the entire model.
Prevailing implementations of MoE techniques introduce many multi-layer perceptrons
(MLPs; the “experts”) and dynamically select which experts to multiply with the hidden
vector. This selection is performed by a “router”–a small neural network trained to deter-
mine the appropriate experts to activate based on the input (Lewis et al., 2021; Rajbhandari
et al., 2020).

Concurrently, recent work has observed that activations in the MLP blocks of LLMs are
sparse Liu et al. (2023b); Mirzadeh et al. (2023). This implies that only a few rows (or
columns) of the corresponding weight matrices are required for the forward pass. Intuitively,
if we could predict a priori which elements of the weight matrices were unnecessary via
an oracle, we could obviate their respective computations. This is thematically similar to
MoE approaches: the activated neurons of the weight matrices can be viewed as activated
“experts” and the oracle can be seen as the “router.”

We observe that the activation patterns of common LLMs suggest a path to such an oracle.
Figure 1 shows a histogram of the post-MLP activations for Layers 0, 15, and 31 for Llama-7B
and Mistral-7B on a sample of 500 datapoints from the RefinedWeb dataset (Penedo et al.,
2023). Many of the activations are concentrated about 0; if these activations could be made
exactly 0, the corresponding weights of the MLP blocks could be made unnecessary during
inference. It is this observation that motivates our study.

In this work, we make the following contributions:

1. We draw a connection between the MoE framework and multiplication performed
by dense matrices in the MLP blocks of LLMs.

2. We motivate the development of a new sparsification procedure based on a novel ac-
tivation function, dubbed CATS (for Contextually Aware Thresholding for Sparsity),
motivated by an empirical evaluation of activation distributions (Figure 1). Cru-
cially, CATS allows for a controllable level of sparsity.
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3. We demonstrate that, without any fine-tuning, CATS can be applied to various base
models, including Mistral-7B and Llama2-7B, and achieves comparable downstream
task performance even at sparsity levels as high as 50%.

4. We demonstrate that, with fine-tuning, CATS outperforms existing state-of-the-art
sparsification techniques in downstream task performance at the same sparsity
level and number of fine-tuning steps.

5. We provide a custom GPU kernel implementation that exploits the sparsity of
CATS and achieves a ∼15% improvement in wall-clock inference latency of token
generation over the dense base models.

2 Related Work

Significant recent work focuses on reducing the inference costs of LLMs. Approaches that
utilize mixture-of-experts or activation sparsity are most similar to our work.

Mixture-of-Experts (MoE) techniques induce effective sparsity in LLMs by determining
which subset of subnetworks (the “experts”) to activate during the inference pass, often
via a trained “router” subnetwork. This is a popular line of work with significant research
interest (Shazeer et al., 2017; Hazimeh et al., 2021; Zhou et al., 2022; Lewis et al., 2021;
Roller et al., 2021; Zuo et al., 2021; Komatsuzaki et al., 2022; Lou et al., 2021; Mustafa et al.,
2022; Rajbhandari et al., 2022; Zhang et al., 2022a;b; Fedus et al., 2022a; Zoph et al., 2022;
Kudugunta et al., 2021; Fedus et al., 2022c; Lepikhin et al., 2020; Du et al., 2022; Fedus et al.,
2022b; Jiang et al., 2024). For a review of MoE models, we refer the reader to (Fedus et al.,
2022a).

Activation Sparsity: Activations are known to be sparse in LLMs that utilize ReLU non-
linearities in their MLP blocks (Li et al., 2022); however, the reasons for this are not well-
understood Hoefler et al. (2021). Nonetheless, activation sparsity induced by ReLU non-
linearities has been explored to reduce memory usage and inference time (Jaszczur et al.,
2021; Liu et al., 2023b; Szatkowski et al., 2023). Recent work in this area has framed the
rows of weight matrices in MLP layers as experts, similar to our work, and/or deploys a
small neural network to predict which activations will be non-zero to reduce inference costs
(Zhang et al., 2024; Liu et al., 2023b) in these ReLU-based models.

Crucially, however, recent state-of-the-art LLMs such as Mistral-7B (Jiang et al., 2023),
Llama2-7B (Touvron et al., 2023), and Gemma (Team et al., 2024)) employ MLP blocks based
on more complex nonlinearities that do not inherently induce sparsity Mirzadeh et al. (2023).
As such, most of the work on ReLU-based activation sparsity is inapplicable to these models.
To the best of our knowledge, ReLUfication is the only work that attempts to bridge this
gap (Mirzadeh et al., 2023). ReLUfication replaces the SiLU and GeLU activation functions
in LLMs with ReLU to induce sparsity. ReLUfication is the primary baseline against which
we compare CATS. In contrast with ReLUfication, CATS contains a controllable level of
sparsity. Furthermore, in Section 5, we demonstrate that CATS demonstrates significantly
better downstream task performance and fine-tuning efficiency than ReLUfication.

We note that Zhang et al. (2024) is concurrent to our work. In contrast with their work,
however, our work is not an empirical evaluation of existing activation functions. Rather,
we propose a new framework for sparsifying LLMs. Our framework utilizes a novel
activation function and enables controllable sparsity. We validate the performance of CATS
in extensive evaluations and provide a custom GPU kernel that translates CATS’ sparsity to
real wall-clock time gains in Section 5.

We discuss additional research areas on LLM efficiency, such as quantization, structure
pruning, knowledge distillation, and hardware-aware optimization in Appendix A.

3 Background

Motivation: As described in Section 1, MoE models selectively activate expert subnetworks
via a trained router. Crucially, we may view the rows (or columns) of MLP layers as experts
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in an MoE model. To identify the layers most likely to benefit from this MoE view (where
many activations can be zeroed), we examine the activations of different layers in LLMs.
Figure 1 demonstrates that activations of the Gated-MLP layers tend to concentrate around
zero across different LLMs. This behavior suggests that many neurons of MLP layers
minimally affect the output in future operations.

Gated-MLP Blocks: We now describe the components of LLMs that our work aims to accel-
erate: the Gated-MLP blocks. Gated-MLP blocks are commonly used in LLMs, including
in the Llama2 family of models, Mistral-7B, and Gemma. A Gated-MLP block consists of
several fully-connected layers and performs the following computation:

Gated-MLP(x) := (SiLU(xWgate) ∗ (xWup))Wdown (1)

where x ∈ Rb×d, Wup ∈ Rm×d, Wgate, Wup ∈ Rd×m, ∗ indicates elementwise multiplication,
and

SiLU(x) := x ∗ sigmoid(x) =
x

1 + e−x (2)

Crucially, the operation SiLU(xWgate) can be viewed as the router in an MoE model. Under
this lens, the columns of Wup and the rows of Wdown are the experts. If SiLU(x) is always
binary, i.e., 1 or 0, it would turn on/off elements of the remaining computation (multipli-
cation by WupWdown). When SiLU(x) is not binary, it can be viewed as a “soft” router that
weighs the experts by different amounts.

4 Method: Contextually-Aware Thresholding for Sparsification (CATS)

We now describe CATS, a framework to accelerate the Gated-MLP blocks of LLMs. The
CATS framework proposes a new activation function and exploits the sparsity induced by
this activation. In Section 5, we apply CATS to Mistral-7B and Llama2-7B and show that
CATS-based models still exhibit significant activation sparsity, even when fine-tuned.

4.1 Stage 1: Determining Cutoff Threshold

We assume we are given a desired sparsity level k (e.g., 70%) as input. For each Gated-MLP
block in the LLM, we compute the activations over a random subset of the training data.
We then compute the cutoff threshold as the kth percentile of the resulting values.

More formally, the cutoff threshold t is

t := min{t′ : F(t′) ≥ k} (3)

where F is the empirical CDF of activations’ absolute values for the given MLP block.

Figure 1 shows histograms of the absolute values of activations of the different MLP block in
different models over the RefinedWeb dataset (Penedo et al., 2023). A sparsity level of 70%
corresponds to a threshold of approximately 0.15; different sparsity levels correspond to
different thresholds. We note that these thresholds are chosen and fixed before any further
fine-tuning.

4.2 Stage 2: Sparsifying Gate-MLP Blocks

Given the cutoff threshold t ≥ 0 corresponding to the input sparsity level k, we wrap the
SiLU(x) activations in each MLP block with the CATS activation. The CATS operation,
denoted as CATSt(·), is defined as:

CATSt(x)j :=
{

xj, if |xj| ≥ t
0, if |xj| < t

(4)
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Here, t is the sparsification threshold and xj is the j-th element of vector x, respectively.

This results in a new activation CATS t(SiLU(·)):

CATS t(SiLU(xWgate)) =

{
SiLU(xWgate) |SiLU(xWgate)| ≥ t
0 |SiLU(xWgate)| < t

(5)

Intuitively, the resulting model zeros out activations which were likely to be close to 0
because their corresponding inputs were small. This procedure results in a trained model
whose activations are sparse and whose performance may then be evaluated. We empirically
validate that this procedure results in a model with sparsity level approximate k, even after
fine-tuning, in Appendix C.

4.3 Custom Kernel Design

The previous subsections describe the procedure for sparsifying LLM’s activations, obviating
computations, and reducing the required number of floating point operations (FLOPs) in
each MLP block. We now translate the reduction in FLOPs to a reduction in actual wall-clock
latency and increase in generation throughput via a custom GPU kernel.

Custom GPU Kernel 1 MLP using CATS

1: Input: threshold t > 0, hidden layer x,
weights Wgate, Wdown, and Wup

2: v← SiLU(xWgate)
3: Mask← 1 if |v| ≥ t else 0
4: x1 ← (xWup[Mask] ∗ v[Mask])
5: y← x1Wdown[Mask]

We focus on reducing the latency of the MLP
blocks by reducing memory accesses because
the MLP blocks are known to be memory-
bound during inference (Kim et al., 2023). As
shown in Line 5 of the Custom GPU Kernel 1,
we first fuse the element-wise multiplication of
v[Mask] into each tiling of xWup[Mask] where v
is the hidden vector after the SiLU activations
and Mask is a binary mask that labels the el-
ements of v with large absolute value. This
fusion saves memory operations that would be necessary for storing and loading x1 several
times. We then directly use Mask to control which parts of the weight matrices Wup and
Wdown to load, instead of using the compressed indices directly as in Zhang et al. (2023) This
further improves the kernel speed because it avoids expensive synchronization operations.
We demonstrate the success of this custom GPU kernel at reducing the inference latency of
CATS-based models as the sparsity increases in Section 5.2.

5 Experiments

In this section, we describe the experiments with which we assess the performance of CATS.
We first describe the experimental details that are common to all experimental settings. We
then describe experiments on downstream task performance. Finally, we measure CATS’
effect on wall-clock time inference when implemented with the custom GPU kernel from
Section 4. We find that CATS-based models outperform the baseline models and their
ReLUfication versions in downstream task performance, with or without fine-tuning, and
can exploit their sparsity for wall-clock inference time speedups over the base models.

We first describe the experimental setup, including base models, CATS-based models,
metrics, datasets, and computational environment.

Base Models: We apply CATS to both Mistral-7B and Llama2-7B as base models to verify it
is generally applicable to different LLMs. We measure the performance of each CATS model
against the original base model. We also compare the performance to of the CATS-based
models to the base model transformed by ReLUfication from Mirzadeh et al. (2023).

CATS-based Models: For a given base model, we train three CATS-based variants that
exhibit different sparsity levels in the MLP blocks: 50%, 70%, and 90% activation sparsity.
We call these models CATS 50%, CATS 70%, and CATS 90%, respectively, where the base
models are clear from context.
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Model ⧹ Dataset WG PIQA SciQ QA HS BoolQ Arc-E Arc-C Avg
acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑ acc↑

Mistral-7B 0.7419 0.8069 0.959 0.3260 0.6128 0.8370 0.8085 0.5034 0.6994
CATS 50% 0.7245 0.8009 0.948 0.3200 0.6097 0.8193 0.7849 0.5043 0.6890
CATS 70% 0.7190 0.8003 0.929 0.292 0.6057 0.8028 0.7492 0.4693 0.6709
CATS 90% 0.5627 0.6001 0.422 0.212 0.3359 0.7086 0.3754 0.2773 0.4368
ReLUfication 0.5043 0.5092 0.236 0.142 0.2580 0.4208 0.2723 0.2415 0.3230

Llama2-7B 0.6906 0.7807 0.94 0.314 0.5715 0.7774 0.7630 0.4343 0.6589
CATS 50% 0.6748 0.7693 0.927 0.322 0.5711 0.7263 0.7441 0.4121 0.6433
CATS 70% 0.6693 0.7584 0.902 0.294 0.5500 0.6590 0.7008 0.3805 0.6143
CATS 90% 0.5738 0.6627 0.611 0.212 0.3848 0.6284 0.4566 0.2816 0.4764
ReLUfication 0.4893 0.5408 0.2570 0.154 0.2586 0.6003 0.2795 0.2406 0.3525

Table 1: Zero-shot downstream task performance of base models, CATS-based models,
and ReLUfication across benchmarks. CATS and ReLUfication are applied to base models
without any further fine-tuning. CATS maintains base-level performance at 50% sparsity in
terms of average accuracy and outperforms ReLUfication at higher sparsity levels.

Metrics: We compare models using several metrics. In the first set of experiments, we
compare each model’s accuracy on downstream tasks. In the second set of experiments, we
compare each model’s wall-clock time inference latency.

Datasets: For the downstream task performance experiments, we use the OpenBookQA,
ARC Easy, Winogrande, HellaSwag, ARC Challenge, PIQA, BoolQ, and SCI-Q datasets
from the Eleuther AI Evaluation Harness (Gao et al., 2023) as in Mirzadeh et al. (2023) for
ease of comparison; these tasks were originally chosen to measure various abilities of the
models across various domains, such as reading comprehension and reasoning. For the
latency experiments, we assess the wall-clock inference time on the RefinedWeb test dataset
(Penedo et al., 2023).

Computational Environment: All experiments were run on a single machine with 8 L40S
GPUs. Latency experiments were run on a single L40S GPU as each 7B base model was able
to fit in a single GPU RAM when performing inference in brain float 16 (BF16) or floating
point 16/32 (FP16/32) precision. We used DeepSpeed with BF16 precision to manage
the high memory overhead during training. We also employed LoRA and targeted 1%
of the parameters (Query and Key in attention modules, Wgate, and Wdown) in the fine-
tuning experiments. During inference, we used the transformers v4.36.2 HuggingFace
library, PyTorch v2.1.2, and CUDA v12.1. We used Triton v2.1.0 for our GPU kernels.
All experiments were run in FP32 precision; changing this to FP16 did not materially affect
results. All of our code, including a one-line script to set up an environment and reproduce
all of our results, is available in the supplementary material.

5.1 Downstream Task Performance

We now compare the downstream task performance of the CATS-based models to the
baseline models in several settings and draw several conclusions.

CATS-based models perform comparably to the base models and outperform ReLUfi-
cation in zero-shot accuracy without any fine-tuning: We first compare the performance
of CATS-based models to the baseline models without any fine-tuning. In this setting, the
CATS prescription is applied directly to the base models, i.e., the activation functions are
simply replaced in the MLP blocks and no fine-tuning is performed. Table 1 shows our
results across 8 different benchmark tasks. CATS-based models demonstrate performance
comparable to the unchanged, out-of-the-box base models, even at high sparsity levels. In
particular, at CATS 50% demonstrates performance comparable to the base model. CATS sig-
nificantly outperforms ReLUficiation in downstream task performance at the same sparsity
level (90%).

CATS-based models perform comparably to the base models and outperform ReLUfica-
tion in zero-shot accuracy with “general” fine-tuning: In this setting, CATS is applied the
base models Llama-7B and Mistral-7B. All models are then fine-tuned on the RefinedWeb
dataset Penedo et al. (2023); their downstream performance is then measured on the 8
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Figure 2: Downstream task performance of the base model, CATS models with different
sparsity levels, and ReLUfication versus number of fine-tuning steps on the RefinedWeb
dataset applied to Mistral-7B (left) and Llama2-7B (right). The CATS models demonstrate
faster convergence and better fine-tuning efficiency than the ReLUfication variants. Further-
more, CATS-50% and CATS-70% demonstrate comparable performance to the base models
without any fine-tuning (0 fine-tuning steps).

evaluation datasets. We emphasize that the dataset upon which the models are fine-tuned is
different from the evaluation datasets in this setting. Figure 2 demonstrates our results. We
note several key observations:

1. CATS-based models still exhibit sparsity after fine-tuning (see Appendix C).
2. CATS-50% demonstrates performance comparable to the base models, even without

any fine-tuning (0 fine-tuning steps). This is in contrast with ReLUficiation, which
demonstrates poor performance without fine-tuning.

3. CATS-50%, CATS-70%, and CATS-90% all display better task performance than
ReLUfication when controlling for the number of fine-tuning steps. In particular,
even with very few fine-tuning steps, the CATS-based models achieve comparable
performance to the base models.

4. CATS-based models, even with sparsity levels as high as 70%, achieve performance
comparable to the base models within 500 steps of fine-tuning, whereas ReLUfica-
tion does not.

CATS-based models perform comparably to the base models and outperform ReLU-
fication in zero-shot accuracy with task-specific fine-tuning: In this setting, the CATS
prescription is applied to Mistral-7B. All variants are then fine-tuned for 10 epochs on the
training data and evaluated on test dataset for the Cola, SST2, and BoolQ datasets. Table 2
demonstrates our results. Our observations are similar to those for “general” fine-tuning:

1. CATS-based models still exhibit sparsity after fine-tuning (see Appendix C).
2. CATS-50% demonstrates performance comparable to the base models. This is

in contrast with ReLUficiation, which demonstrates a significant performance
degradation.

3. CATS-50%, CATS-70%, and CATS-90% all display better task performance than
ReLUfication.

5.2 Wall-clock Time Speedups for Inference

Activation sparsity of a model is not sufficient to directly enable wall-clock time inference
speedups (Frantar & Alistarh, 2023). In this subsection, we demonstrate that our custom
GPU kernel translates the activation sparsity induced by CATS to real wall-clock time gains.

CATS-based models can translate their activation sparsity to wall-clock time speedups:

7
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Dataset/Sparsity Base Model 0.5 0.7 0.9 ReLUfication

Cola 0.8667 0.8658 (-0.10%) 0.8552 (-1.32%) 0.8303 (-4.21%) 0.6922 (-20.13%)
SST2 0.9644 0.9656 (+0.12%) 0.9702 (+0.60%) 0.9427 (-2.25%) 0.7856 (-18.55%)

BoolQ 0.8905 0.8862 (-0.48%) 0.8807 (-1.10%) 0.7920 (-11.06%) 0.6624 (-25.61%)

Average 0.9072 0.9059 (-0.13%) 0.9020 (-0.52%) 0.8550 (-5.22%) 0.7134 (-19.38%)

Table 2: Downstream task performance of Mistral-7B and its CATS-based and ReLUfication
variants across three different benchmark datasets. Top accuracies are marked in bold and
second-highest in underline. Relative performance degradation is given in parentheses.
CATS-50% demonstrates performance within 0.5% of the base model, whereas ReLUfication
demonstrates a significant performance drop.
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Figure 3: Latency of the original Mistral-7B MLP block (left, “Dense”), Llama-7B MLP block
(right, “Dense”), and their CATS-based variants at different sparsity levels, compared to
“Optimal.” Our custom GPU kernel improves the latency of the CATS-based variants and
achieves performance close to “Optimal” for most reasonable sparsity levels.

Figure 3 shows the wall-clock inference time of of the dense model compared to CATS
implemented via the custom GPU kernel descripted in Section 4.3, for various sparsity
levels of CATS. We evaluate the latency of a single MLP block and the throughput of the
generation stage of the end-to-end inference. Mistral-7B contains 32 MLPs with m = 14336
and d = 4096, and Llama2-7B contains 32 MLPs with m = 11008 and d = 4096 (m and d are
defined after Equation 1).

In Figures 3a and 3b, we compare our method (“CATS-with-Custom-Kernel”) with the
dense MLP with mdense = m (“Dense”) and the dense MLP with moptimal = m ∗ Sparsity
(“Optimal”), the latter of which is a proxy for the best wall-clock time we could hope to
achieve. At 50% (respectively, 70%) sparsity, the sparse kernel achieves a∼40% (respectively,
∼70%) speedup over the original dense MLP. Latency measurements are obtained by doing
20 rounds of warmups, repeating the kernel 80 times, and computing the geometric mean
of the latency of each round. The comparison with Dense shows that our sparse kernel
can consistently outperform the original MLP. The comparison with Optimal shows that
our sparse kernel is close to the Optimal when the sparsity level is low. As the sparsity
level increases, the gap between our performance and Optimal increases, as is expected. We
note that our sparse kernel performs the same number of memory access as the Optimal
but, due to difference in access patterns, the different methods result in different wall-clock
time measurements. We note that Optimal can be worse than our sparse kernels when
moptimal is not the shape for which GPU libraries have optimized (Tillet & Cox, 2017). Our
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Figure 4: Throughput of Mistral-7B (left, “Dense”) and Llama2-7B (right, “Dense”) and
CATS-50% with the custom GPU kernel. CATS-50% demonstrates significantly higher
throughput.

sparse kernel can be worse than Optimal when the overhead of operations on zero values
outweighs the benefit of reduced memory access.

In Figures 4a and 4b, we compare dense models with CATS-with-Custom-Kernel (50%
sparsity) on the throughput of the generation stage. The generation stage (or “decoding”
stage) is known to be memory-bound (Kim et al., 2023), which suggests CATS can improve
inference througput. We test the generation throughput at batch size 1 and beam width 1,
and record the latency from the first generated token to the last token. The throughput is
calculated by the generated length over latency. The final throughput is averaged (geometric
mean) over 50 samples from the RefinedWeb test dataset. CATS can accelerate the generation
stage by ∼18% for Llama2-7B and ∼21% for Mistral-7B at 50% sparsity.

Though we only test on Huggingface (Wolf et al., 2020), our methodology is orthogonal
to the framework and thus can be used in other LLM serving systems such as DeepSpeed
(Rajbhandari et al., 2022) and TensorRT-LLM (Nvidia, 2024).

6 Discussion and Conclusion

We presented CATS, a novel framework for inducing and exploiting activation sparsity
in LLMs. At the heart of our framework is the CATS activation, given in Equation 5, that
induces a controllable level of activation sparsity in LLMs. We also provide a custom GPU
kernel implementation that exploits CATS’s sparsity to achieve real wall-clock time gains in
inference latency.

CATS-based models demonstrate downstream task performance comparable to unmodified
base models and better than baseline models with no fine-tuning, even at sparsity levels as
high as 50%. CATS-based models also exhibit better behavior than ReLUfication at similar
levels of fine-tuning, and often achieve performance comparable to the base model at high
levels of sparsity, both with general and task-specific fine-tuning.

Limitations and Future Work: Our work leaves several opportunities for future work.
Most importantly, our empirical evaluations of CATS were restricted to the Mistral-7B and
Llama2-7B base models. While we suspect CATS would also apply to other, larger models,
we leave a precise empirical study to future studies. Future work may also investigate
how to apply techniques similar to CATS to other MLP architectures beyond Gated-MLP,
or to attention layers but without a task performance degradation. It may be possible, for
example, to use recent techniques to accelerate attention layers (such as those from Zhang
et al. (2022a) and Voita et al. (2019)) in conjunction with CATS.
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A Additional Related Work

In this appendix, we discuss additional veins of related work.

Hardware-Aware Optimization that relies on customizing the algorithm implementation
for the underlying hardware can result in significant performance speedup Dao et al. (2022);
Fu et al. (2023a), especially for sparse kernels Gale et al. (2023); Yu et al. (2023). Recent
hardware-aware methods in LLMs have shown to be highly effective in lowering the cost of
attention operation Rabe & Staats (2022); Dao (2023); Liu et al. (2023a). Similar to attention
operation, MLP is also memory-bounded on highly parallel machines like GPU Kim et al.
(2023). The sparsity has the potential to expedite MLP because it can increase the arithmetic
intensity. Based on the Roofline analysis Williams et al. (2009), higher arithmetic intensity
means shorter wall-clock time for memory-bounded operations. In this work, we focus on
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leveraging the sparsity to reduce the memory transfers associated with the MLP weights.
We do so by designing algorithmic optimizations that adaptively induce sparsity and
implementing hardware-aware optimizations that translate the achieved nominal sparsity
into actual wall-clock time speedup.

Structural pruning techniques induce sparsity by setting certain weights to zero so their
corresponding activations need not be computed Wang et al. (2019); Kurtic et al. (2022); Xia
et al. (2022); Zafrir et al. (2021); Ma et al. (2023). However, applying such techniques naı̈vely
may not result in actual wall-clock time speedups if the resulting sparsity pattern does
not lower the number of General Matrix Multiplication (GEMM) calls. Furthermore, the
pruning pattern is determined at the model level and is not adaptive to the inputs, which
may result in a degradation in task performance.

Quantization and Knowledge Distillation from larger models to smaller models are other
popular forms of LLM inference optimization Bai et al. (2020); Frantar et al. (2022); Dettmers
et al. (2023); Sun et al. (2019; 2020); Pan et al. (2020); West et al. (2022); Fu et al. (2023b). These
methods often reduce the memory and computational complexity at the cost of performance
degradation or require extensive finetuning. Our work can be applied to quantized or
distilled models as well, although the achieved sparsity level on these models may differ.

B Accelerating Attention Layers

B.1 Method

In this section, we discuss how we can apply CATS to reduce the inference costs of attention
layers inside Transformer blocks. The basic operations of a Transformer block can be written
as:

MLPi(Attentioni(x)) (6)

where x is the hidden vector right before the i-th layer and where we have excluded
operations like batch normalization, positional embedding, residual connections, etc. for
simplicity. (For more details on the variants of Attention layers and those used in our
models, we refer the reader to Touvron et al. (2023) and Jiang et al. (2023).)

The new equation for i-th transformer layer, where we wrap the previous layer with CATS
activations, becomes:

MLPi(CATSti,1(Attentioni(CATSti,2(x)))) (7)

where ti,1 and ti,2 are the sparsification thresholds for the CATS operations applied before
the MLP and attention layers, respectively, in the i-th transformer layer.

We verify that this operation results in sparse activations in Appendix C.

B.2 Experimental Results

CATS can also be applied to accelerate the attention blocks of LLMs: We also apply CATS
to accelerate the computation of attention layers. Our approach is inspired by “Stage 2” of
ReLUficiation (Mirzadeh et al., 2023).

Due to space constraints, we only measure the performance of CATS-50% applied to the
base Mistral-7B model and measure zero-shot task performance. We fine-tune both models
for 2000 fine-tuning batches of 16 examples each. Stage 2 CATS, which appplies CATS to
both the MLP and Attention blocks, demonstrates an average downstream task performance
of 66.84% across the 8 different evaluation tasks from Section 5, whereas the base Mistral-7B
model demonstrates an average task performance of 69.94%. In contrast, the original CATS,
applied only to the MLP layers, demonstrates an average task performance of 69.21%.

15



Preprint. Under review.

Our results demonstrate that CATS can also be applied to the attention layers of LLMs,
albeit with a slight (4.3% relative) performance degradation. Future work may investigate
how to apply CATS in way that better preserves the performance of the model.

C Target sparsity vs. actual sparsity

(a) Sparsity of Mistral-7B. (b) Sparsity of Llama2-7B.

Figure 5: CATS-based models still exhibit sparsity after general fine-tuning on the Refined-
Web dataset.

Dataset/Sparsity 0.5 0.7 0.9

Cola 49.629 68.926 87.6
BoolQ 49.196 68.444 87.571
SST2 48.727 68.738 87.882

Average 49.184 68.703 87.684

Table 3: CATS-based models’ final sparsity after specific fine-tuning on each task. They
continue to exhibit sparsity after task-specific fine-tuning.

Figure 5 demonstrates the the sparsity of each layer of Mistral-7B and Llama2-7B after
CATS has been applied and fine-tuning has been performed on the RefinedWeb dataset.
The average sparsity of each model (dashed lines) is roughly equal to the target sparsities
(indicated by the legend).

Table 3 demonstrates the average layer sparsity of each model after task-specific fine-tuning
on the 3 datasets used for this experimental setting in Section 5. The observed sparsity levels
are approximately equal to the target sparsity levels.

Future work might focus on enforcing a minimum sparsity layer-wise, i.e., by zeroing out at
least enough neurons to enforce the desired sparsity level k for each layer. Such work could
investigate the tradeoffs between sparsity, latency, and downstream task performance.

D Details on Custom GPU Kernel Design

The previous subsections describe the procedure by which we sparsify the activations of
an LLM, obviate some computations, and reduce the required number of FLOPs. Though
significant recent work has focused on FLOPs as a proxy for inference cost, other work
has demonstrated that reducing FLOPs is not sufficient to reduce real wall-clock inference
latency Liu et al. (2023b). However, predictable sparsity patterns can be exploited to reduce
floating point operations (FLOPs) during inference. We now translate the reduction in
FLOPs to an actual wall-clock latency reduction via several custom GPU kernel optimization
techniques.
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The operations of the Gated-MLP with the CATS activation functions are:

v = CATS(SiLU(xWgate)) (8)
Mask = 1{|v|>t} (elementwise) (9)

y = (v′ ∗ (xW ′up))W
′
down (10)

where v′, W ′up, and W ′down are v, Wup, and Wdown masked by Mask (for the matrices Wup
and Wdown, the entire column j is 0 if Maskj = 0, i.e., the mask is broadcast across columns).

If Mask is sparse, then Equation (10) performs two sparse matrix multiplications. In fact,
only coordinates (respectively, rows) of v (respectively, Wup and Wdown) corresponding
to nonzero coordinates of Mask need to be loaded into memory. Since the MLP layer at
inference time is known to be memory-bound Kim et al. (2023), the latency can be reduced
if the memory access is reduced. We exploit these observations to translate the reduction in
FLOPs to a real wall-clock time reduction in inference.

Custom GPU Kernel 2 MLP using CATS

1: Input: threshold t > 0, hidden layer x,
weights Wgate, Wdown, and Wup

2: v← CATS (SiLU(xWgate))
3: Mask← 1 if |v| ≥ t else 0
4: idcs← indices where Mask = 1
5: x1 ← (xWup[idcs] ∗ v[idcs])
6: y← x1Wdown[idcs]

Custom GPU Kernel 3 MLP using CATS
without atomic operations

1: Input: threshold t > 0, hidden layer x,
weights Wgate, Wdown, and Wup

2: v← CATS (SiLU(xWgate))
3: Mask← 1 if |v| ≥ t else 0
4: x1 ← (xWup[Mask] ∗ v[Mask])
5: y← x1Wdown[Mask]

Algorithms 2 and 3 describe Equations (8)-(10) in lower-level pseudocode. Algorithms 2
and 3 contain several optimizations.

Optimization 1: We fuse the element-wise multiplication of v[idcs] into each tiling of
xWup[idcs] as shown in Line 5 of Algorithm 2. We use an efficient algorithm from Deja
Vu Liu et al. (2023b) to compute x1 = xWup[idcs] without the element-wise multiplication
by v[idcs]. In this manner, we fuse several operations and save the memory operations for
storing and loading x1 several times.

The atomic operations in Line 4 of 2, however, introduce extra overhead. Line 4 compresses
a one-hot mask to a compressed coordinate array and requires atomically appending to the
idcs. GPUs, however, cannot efficiently perform such atomic operations because of their
massively parallel nature.

Optimization 2: We therefore introduce another optimization in Algorithm 3 to reduce the
memory loading incurred by the atomic operations. In Algorithm 3, we directly use Mask to
control which parts of weight matrices to load, instead of the condensed idcs. Algorithm 3
has more operations than Algorithm 2 because it directly assigns the unloaded elements
to zero instead of squeezing out the zero values before computation. Algorithm 3 does
not skip the zero operations in a fine-grained way because the sparsity in this problem is
not asymptotically high Zhang et al. (2023), which means the operation reduction does not
compensate for the performance loss caused by complex control logic. Figure 6 the ablation
experiment results
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(a) CATS of Mistral-7B’s MLP.
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(b) CATS of Llama2-7B’s MLP.

Figure 6: Ablation study on kernel optimizations.
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