Intelligence Per Watt: A Study of Local Intelligence Efficiency

Jon Saad-Falcon* Stanford

Avanika Narayan* Stanford University

Hakki Orhun Akengin Stanford University

J. Wes Griffin Stanford University

Herumb Shandilya Stanford University

Adrian Gamarra Lafuente Stanford

Medhya Goel Stanford University

Rebecca Joseph Stanford University

Shlok Natarajan Stanford

Etash Kumar Guha Stanford University

Shang Zhu Together AI

Ben Athiwaratkun Together AI

John Hennessy Stanford University

Azalia Mirhoseini Stanford University

Christopher Ré Stanford University

Preprint, 2025


We introduce intelligence-per-watt (IPW) to measure how efficiently inference systems convert energy into useful computation. Local LMs accurately respond to 88.7% of single-turn chat and reasoning queries, with local intelligence efficiency improving 5.3x from 2023-2025.